Tag Archives: #GPT4

Reasoning via Planning (RAP) the LLM Reasoners

In my research, I have discovered a variety of LLMs. I am always fascinated by the complexity and capabilities of these models. I follow several startups, founders, researchers, and data scientists in this growing space.

The role of research in AI is critical as they drive the progress and understanding of intelligence technologies. Researchers have a role in exploring state-of-the-art techniques creating algorithms, and discovering new applications for AI. Their work contributes to natural language processing, computer vision, robotics, and more advancements.

They investigate AI systems’ potentials and limitations to ensure their responsible use. Moreover, researchers share their findings through publications promoting collaboration and propelling the field forward. Their commitment to pushing AI’s boundaries improves capabilities and shapes its impact on society. Therefore researchers play a role in shaping the future of AI-driven innovations.

Let’s consider some of the advancements in LLM and how researchers use it to advance their work with Reasoning via Planning(RAP).

Large Language Models (LLMs) are witnessing progress leading to groundbreaking advancements and tools. LLMs have displayed capabilities in tasks such as generating text-classifying sentiment and performing zero-shot classification. These abilities have revolutionized content creation, customer service, and data analysis by boosting productivity and efficiency.

In addition to their existing strengths, researchers are now exploring the potential of LLMs in reasoning. Transformer architecture could accurately respond to reasoning problems in the training space but struggled to generalize to examples drawn from other distributions within the same problem space. They discovered that the models had learned to use statistical features to make predictions rather than understanding the underlying reasoning function.

  • These models can comprehend information and make logical deductions, making them valuable for question-answering, problem-solving, and decision-making. However, despite their skills, LLMs still need help with tasks requiring an internal world model like humans. This limitation hampers their ability to generate action plans and perform reasoning effectively.
  • Researchers have developed a reasoning framework called Reasoning via Planning (RAP) to address these challenges. This framework equips LLMs with algorithms for reasoning, enabling them to tackle tasks more efficiently.

The central concept behind RAP is to approach multi-reasoning as a process of planning, where we search for the most optimal sequence of reasoning steps while considering the balance between exploration and exploitation. To achieve this, RAP introduces the idea of a “World Model” and a “Reward” function.

  • In the RAP framework, the concept of a “World Model” is introduced that treats solutions as states. It then adds actions or thoughts to these states as transitions. The “Reward” function plays a role in evaluating the effectiveness of each reasoning step giving rewards to reasoning chains that are more likely to be correct.
  • Apart from the RAP paper, researchers have proposed LLM Reasoners, an AI library designed to enhance LLMs (language models) with reasoning capabilities. LLM Reasoners perceive step reasoning as a planning process and utilize sophisticated algorithms to search for the most efficient reasoning steps. They strike a balance between exploring options and exploiting information. With LLM Reasoners, you can define reward functions. Optionally include a world model streamlining aspects of the reasoning process such as Reasoning Algorithms, Visualization tools, LLM invocation, etc.
  • Extensive experiments on challenging reasoning problems have demonstrated that RAP outperforms CoT-based (Commonsense Transformers) approaches. In scenarios, it even surpasses models like GPT 4.
  • Through evaluation of the steps in reasoning, the LLM utilizes its world model to create a reasoning tree. RAP allows it to simulate outcomes estimate rewards, and improve its decision-making process.

The versatility of RAP in designing reward states and actions showcases its potential as a framework for addressing reasoning tasks. Its innovative approach that combines planning and reasoning brings forth opportunities for AI systems to achieve thinking and planning at a human level. The advanced reasoning algorithms, user visualization, and compatibility with LLM libraries contribute to its potential to revolutionize the field of LLM reasoning.

Reasoning via Planning (RAP) represents an advancement in enhancing the capabilities of Language Models (LLMs) by providing a robust framework for handling complex reasoning tasks. As AI systems progress, the RAPs approach could be instrumental in unlocking level thinking and planning to propel the field of AI toward an era of intelligent decision-making and problem-solving. The future holds possibilities, with RAP leading the way on this journey. I will continue to share these discoveries with the community.

Resources

Source code Paper for Reasoning via Planning (RAP)

GitHub for RAP

GPT4 LLAMA 2 and Claude 2 – by Design

A Large Language Model (LLM) is a computer program that has been extensively trained using a vast amount of written content from various sources such as the internet, books, and articles. Through this training, the LLM has developed an understanding of language closely resembling our comprehension.

LLM can generate text that mimics writing styles. It can also respond to your questions, translate text between languages, assist in completing writing tasks, and summarize passages.

The design of these models has acquired the ability not to recognize words within a sentence but also to grasp their underlying meanings. They comprehend the context and relationships among words and phrases, producing accurate and relevant responses.

LLMs have undergone training on millions or even billions of sentences. This extensive knowledge enables them to identify patterns and associations that may go unnoticed by humans.

Let’s take a closer look at a few models:

Llama 2

Picture a multilingual language expert that can fluently speak over 200 languages. That’s Llama 2! It’s the upgraded version of Llama jointly developed by Meta and Microsoft. Llama 2 excels at breaking down barriers enabling effortless communication across nations and cultures. This model is ideal for both research purposes and businesses alike. Soon you can access it through the Microsoft Azure platform catalog as Amazon SageMaker.

The Lifelong Learning Machines (LLAMA) project’s second phase, LLAMA 2, introduced advancements:

  • Enhanced ability for continual learning; Expanding on the techniques employed in LLAMA 1, the systems in LLAMA 2 could learn continuously from diverse datasets for longer durations without forgetting previously acquired knowledge.
  • Integration of symbolic knowledge; Apart from learning from data, LLAMA 2 systems could incorporate explicit symbolic knowledge to complement their learning, including utilizing knowledge graphs, rules, and relational information.
  • The design of LLAMA 2 systems embraced a modular and flexible structure that allowed different components to be combined according to specific requirements. By design, LLAMA 2 enabled customization for applications.
  • The systems exhibited enhanced capability to simultaneously learn multiple abilities and skills through multi-task training within the modular architecture.
  • LLAMA 2 systems could effectively apply acquired knowledge to new situations by adapting more flexibly from diverse datasets. Their continual learning process resulted in generalization abilities.
  • Through multi-task learning, LLAMA 2 systems demonstrated capabilities such as conversational question answering, language modeling, image captioning, and more.

GPT 4

GPT 4 stands out as the most advanced version of the GPT series. Unlike its predecessor, GPT 3.5, this model excels at handling text and image inputs. Let’s consider some of its attributes.

Parameters

Parameters dictate how a neural network processes input data and produces output data. They are acquired through training. Encapsulate the knowledge and abilities of the model. As the number of parameters increases, so does the complexity and expressiveness of the model, enabling it to handle amounts of data.

  • Versatile Handling of Multimodal Data: Unlike its previous version, GPT 4 can process text and images as input while generating text as output. This versatility empowers it to handle diverse and challenging tasks such as describing images, answering questions with diagrams, and creating imaginative content.
  •  Addressing Complex Tasks: With a trillion parameters, GPT 4 demonstrates problem-solving abilities. Possesses extensive general knowledge. It can achieve accuracy in demanding tasks like simulated bar exams and creative writing challenges with constraints.
  • Generating Coherent Text: GPT 4 generates coherent and contextually relevant texts. The vast number of parameters allows it to consider a context window of 32,768 tokens, significantly improving the coherence and relevance of its generated outputs.
  • Human-Like Intelligence: GPT 4s, creativity, and collaboration capabilities are astonishing. It can compose songs, write screenplays and adapt to users writing styles. Moreover, it can. Follow nuanced instructions provided in a language, such as altering the tone of voice or adjusting the output format.

Common Challenges with LLM 

  • High Computing Costs: Training and operating a model with such an enormous number of parameters requires resources. OpenAI has invested in a designed supercomputer tailored to handle this workload, estimated to cost around $10 billion.
  •  Extended Training Time: The process of training GPT 4 takes time, although the exact duration has not been disclosed. However OpenAIs ability to accurately predict training performance indicates that they have put effort into optimizing this process.
  •  Alignment with Human Values: Ensuring that GPT 4 aligns with values and expectations is an undertaking. While it possesses capabilities, there is still room for improvement. OpenAI actively seeks feedback from experts and users to refine the model’s behavior and reduce the occurrence of inaccurate outputs.

GPT has expanded the horizons of machine learning by demonstrating the power of learning. This approach enables the model to learn from data and tackle new tasks without extensive retraining.

Claude 2

What sets this model apart is its focus on intelligence. Claude 2 not only comprehends emotions but also mirrors them, making interactions with AI feel more natural and human-like.

Let’s consider some of the features:

  • It can handle, up to 100,000 tokens, analyzing research papers, or extracting data from extensive datasets. The fact that Claude 2 can efficiently handle amounts of text sets it apart from many other chatbot systems available.
  • Emotional intelligence enables it to recognize emotions within the text and effectively gauge your state during conversations. 
  • Potential to improve health support and customer service. Claude 2 could assist in follow-ups and address non-critical questions regarding care or treatment plans. It can understand emotions and respond in a personal and meaningful way.
  • Versatility. Claude 2’s versatility enables processing text from various sources, making it valuable in academia, journalism, and research. Its ability to handle complex information and make informed judgments enhances its applicability in content curation and data analysis.

Both Claude 2 and ChatGPT employ intelligence. They have distinct areas of expertise. Claude 2 specializes in text processing and making judgments, while ChatGPT focuses on tasks. The decision to choose between these two chatbots depends on the needs of the job you have at hand.

Large Language Models have become tools in Artificial Intelligence. LLAMA 2 has enhanced lifelong learning capabilities. The ongoing development of GPT 4 continues to be at the forefront of natural language processing due to the parameter size that enables it. Claude 2’s launch signifies the ongoing evolution of AI chatbots, aiming for safer and more accountable AI technology.

These models have been designed to demonstrate how AI systems can gather information and enhance intelligence through learning. LLMs are revolutionizing our interactions with computers. Transforming how we use language in areas of our lives.